ADHESIVES AND WOOD-BASED PANELS WITH MATERIALS FROM SUNFLOWERS

<u>E. Papadopoulou</u>, S. Kountouras, T. Sevastiadis, C. Stathopoulos, N. Kopsahelis, A. A. Koutinas, D. Antonopoulos

AAIC - International Conference on "Industrial Crops and Products", Athens, September 2014

O.P. Competitiveness and Entrepreneurship (EPAN II), ROP Macedonia - Thrace, ROP Crete and Aegean Islands, ROP Thessaly - Mainland Greece - Epirus, ROP Attica

BIOREF Project

Full title: Development of a biorefinery for the valorisation of biodiesel production residues to produce biodegradable polymers and high added-value products.

Project duration: 2011-2014

Financial support: Greek General Secretariat for Research and Technology, European Union **Partners**:

- <u>ARGO SA</u>, Athens Greece Packaging industry
- Pettas SA, Patra, Greece Industrial plant for biodiesel production
- CHIMAR HELLAS S.A., Thessaloniki Greece SME K-H developer for the wood industry

Sub contractors:

- Agricultural University of Athens, Greece
- Institute of Chemical Engineering Sciences in Patra, Greece

BIOREF Project

The **main objective** of Bioref project is the development of novel biorefineries that convert residual biomass through integrated physical, (thermo)chemical and biological processes into bio-products suitable for various applications.

The project **focuses** on the exploitation of the residual streams resulted during the production of biodiesel from sunflower seeds.

The by-products produced are crude glycerol and sunflower cake (the protein-rich residue that remains after the extraction of oil from the sunflower seeds).

Crude glycerol is converted through microbial fermentations into **poly-hydroxy-alkanoates** (PHAs), **hydrogen** and **microbial lipids** (Single Cell Oils, SCOs), while sunflower cake is used for the production of **protein**. The Bioref bio-materials find application in <u>food packaging</u>, <u>food additives</u> and <u>adhesives for the wood-industry</u>.

The role of CHIMAR in Bioref

- Use of protein in the synthesis of phenol-formaldehyde (PF) polymers suitable for the production of plywood panels
- Use of sunflower cake as wood substitute in the production of particleboards

Chimar Hellas S.A.

Use of protein in PF polymers as additive

4h in boiling water-1h in cool water

0.95

92

0.064

0.91

85

0.068

0.94

96

0.059

Initially, crude protein (produced by 2 different eluents) was used as additive in PF resins at the levels of 2.5 and 5%.

5

PFstd

2

5.0

1.21

73

0.93

87

0.075

Formula 1 2 3 4 PFstd PFstd PFstd PFstd Resin Sample No 1 1 2 -Protein level, % s/s 2.5 5.0 2.5 -EN314.1 **Pre-treatment** Immersion in water of 20°C for 24h 5.1.1 Shear strength, 1.04 1.04 1.18 1.09 N/mm² Wood failure, % 83 93 84 89 **Pre-treatment** 4h in boiling water-16h drying at 60°C-

0.88

91

0.070

Results of plywood panels (3 layers)

Sample 1: Eluent = sodium hydroxide NaOH Sample 2: Eluent = sodium sulfite -Na₂SO₃

Results:

- Sample 1 was the best performed
- 2.5 % addition level was enough for performance improvement

5.1.3:

N/mm²

Shear strength,

Wood failure, %

Desiccator, mg/L

Chimar Hellas S.A

Comparison of crude and hydrolysed proteins

• Crude and hydrolysed proteins (appx. 35%) were evaluated as additives in PF resins at the levels of 2.5%.

Formula	1	2	3	4	
Resin	PFstd	PFstd	PFstd	PFstd	
Protein sample No	-	1 (C)	2 (C)	3 (H)	
Protein level, % s/s	-	2.5 2.5		2.5	
EN314.1					
Pre-treatment 5.1.1:	Immersion in water of 20°C for 24h				
Shear strength, N/mm ²	0.74	1.00	0.75	1.64	
Wood failure, %	95	85	90	90	
Pre-treatment 5.1.3:	4h in boiling water-16h drying at 60°C-4h in boiling water- 1h in cool water				
Shear strength, N/mm ²	0.73	0.91	0.70	1.21	
Wood failure, %	90	85	90	75	
Desiccator, mg/L	0.033	0.050	0.034	0.096	

Results of plywood panels (3 layers)

Sample 1: Eluent = sodium hydroxide NaOH Sample 2: Eluent = sodium sulfite -Na2SO3 Sample 3: Hydrolysed protein

Results:

- All protein samples have comparable if not advantageous performance to the control resin.
- Hydrolysed protein has better performance than the crude proteins

Chimar Hellas S.A

Evaluation of hydrolysed proteins

Proteins were hydrolysed at the levels of 30 and 40% and were tested both as additives and as phenol substitute during the synthesis of the resin at the level of 5%.

Results of plywood panels - 1

Results of Plywood panels' evaluation produced with resins where hydrolysed proteins were used <u>as additive</u> at the level of 5%

PW structure	O/P/O	O/P/O	O/P/O	O/P/O	O/P/O	
Resin - 5% addition	PF std	P30 in resin	P40 in resin	P30 in GM	P40 in GM	
EN314.1		Dry				
Shear strength, N/mm ²	1,95	2,31	2,29	1.97	1.97	
Wood failure, %	85	58	77	65	59	
Pre-treatment 5.1.1:	Imm	Immersion in water of 20°C for 24h				
Shear strength, N/mm ²	1,36	1,50	1,61	1.07	0.98	
Wood failure, %	54	58	49	77	51	
Pre-treatment 5.1.3:	4h in boiling water-16h drying at 60°C-4h in boiling water-1h in cool water					
Shear strength, N/mm ²	1,24	1,43	1,31	1.27	1.24	
Wood failure, %	47	61	31	59	48	
Desiccator, mg/L	0,205	0,236	0,160	0.214	0.211	

Mean shear strength fv, N/mm²	Mean apparent cohesive wood failure w, %		
0.2 ≤ fv < 0.4	≥ 80		
0.4 ≤ fv < 0.6	≥ 60		
0.6 ≤ fv < 1.0	≥ 40		
1.0 ≤ fv	no requirement		

Shear strength testing

Wood failure evaluation

Chimar Hellas S.A.

O/P/O = Okume/Poplar/Olume

GM = Glue mixture (resin, water, flour)

Results:

• The samples performed better when used as additives in the resin.

• The **30% hydrolysed protein** performed better than the one with 40% hydrolysis

Results of plywood panels - 2

Results of Plywood panels' evaluation produced with resins where proteins were hydrolysed at the levels of 10 and 30% and were used <u>as phenol substitute</u> at the level of 5%. A resin with crude protein and a conventional PF resin were also included in the test for comparison reasons.

Resin	PF std	PF-5P non hydrolysed	PF-5P10	PF-5P30	
	Dry				
Shear strength, N/mm ²	2.25	1.86	1.80	2.00	
Wood failure, %	40	70	90	40	
EN314.1					
Pre-treatment 5.1.1:	Imme	ersion in water of 20)°C for 24h (24h t	est)	
Shear strength, N/mm ²	1.52	1.46	1.67	1.63	
Wood failure, %	72	59	49	60	
Pre-treatment 5.1.3:	4h in boiling water-16h drying at 60°C-4h in boiling water-1h in cool water (cyclic test)				
Shear strength, N/mm ²	1.26	1.30	1.27	1.35	
Wood failure, %	85	86	78	79	
ISO 12460					
Desiccator, mg/L	0.280	0.159	0.201	0.149	

Results:

- In all cases the panels with experimental resins have reduced free formaldehyde emissions.
- The 30% hydrolysed protein performed overall slightly better than the other samples.

Results of plywood panels - 3

Results of Plywood panels' evaluation produced with resins where proteins were hydrolysed at the levels of 30 and 40% and were used <u>as phenol substitute</u> at the level of 5%.

PW structure	S	S	S	
Resin	PF std	PF-5P30	PF-5P40	
5% addition	-	P30 in resin	P40 in resin	
EN314.1	Dry			
Shear strength, N/mm ²	1.52	2.07	1.76	
Wood failure, %	66	40	39	
Pre-treatment 5.1.1:	Immersion in water of 20°C for 24h			
Shear strength, N/mm ²	1.00	1.11	1.16	
Wood failure, %	61	24	36	
Pre-treatment 5.1.3:	4h in boiling water-16h drying at 60°C-4h in boiling water-1h in cool water			
Shear strength, N/mm ²	1.06	1.11	1.15	
Wood failure, %	66	28	33	
Desiccator, mg/L	0.245	0.475	0.267	

Results:

• The 40% hydrolysed protein performs better than the 30% hydrolysed protein.

Resins with higher substitution levels of phenol.

Particleboards with sunflower cake

Sunflower cake (after the oil was removed) was used as wood substitute at the level of 20% for the production of particleboards.

Formula No		1	2	
Resin:		PF std	PF std	Result:
Wood sub.		-	20%	Improved
Internal Bond, ave (EN 319)	N/mm ²	0.22	0.33	internal bond -
STD		0.13	0.10	all other properties
Thickness Swelling 24h, 20°C, ave (EN 317)	%	19.89	19.75	practically the same
STD		0.66	0.84	
Modulus of rupture, ave. (EN 310)	N/mm ²	18.38	13.61	
Modulus of rupture-A, ave	N/mm ²	9.51	7.83	
Perforator value (EN 120)	mg/100g	4.54	3.52	
Formaldehyde content at 6.5% MC	mg/100g	3.94	3.16	

Chimar Hellas S.A.

CHIMAR Activities in Brief

- ✓ Developer and supplier of industrial technology and services in the field of adhesive systems for wood based panels.
- ✓ Focus on safe, environmentally friendly products and technologies. Technology for bio-based adhesive systems.
- Pioneer in the reduction of formaldehyde emission from wood panels (technology for emission at the level of natural wood).
 Acting globally and helping locally
- Engineering & equipment procurement services for formaldehyde/UFC/resin/chemical additives plants
- Versatility of services: R&D for third parties, Testing and evaluation, Technical support for field industries (remotely and on-site), Consulting and Training, Chemicals production on demand, Accredited formaldehyde testing (EN ISO/IEC 17025), Patent services, Industrial Equipment Representation.

37 Years Expertise in 40 Countries

Indicative references

Acknowledgments

This work has been supported by the **Greek National Strategic Reference Framework** (NSRF) **Programme** and the **European Regional Development Fund and the participating organisations** (Project no 09SYN-81- 715 entitled " Development of a biorefinery for the valorisation of biodiesel production residues to produce biodegradable polymers and high added-value products". Project acronym: BIOREF).

Thessaly - Mainland Greece - Epirus, ROP Attica

Contact Details

Sofouli 88, 55131 Thessaloniki, GREECE Tel: +30 2310 424167, Fax: +30 2310 424149 e-mail: <u>papadopoulou@ari.gr</u>; <u>office@ari.gr</u> www.chimar-hellas.com

