Producing Panels with Formaldehyde Emission at Wood Level

World Formaldehyde 2011 8th December 2011 Grand Millennium Hotel Kuala Lumpur Malaysia

Paschalis Tsirogiannis CHIMAR HELLAS S.A.

Structure of the presentation

- The formaldehyde debate
- Occupational exposure limits
- Formaldehyde test methods
- Emission standards for wood based panels
- Industrial application of Chimar Technology
- Summary / Conclusions

Re–evaluation of formaldehyde I

- World Health Organisation's International Agency for Cancer Research (IARC) recommended (monograph vol. 88, 12/2006) classification of formaldehyde from Group 2A -"probably carcinogenic to humans" to **Group 1** - "carcinogenic to humans". This recommendation is not legally binding and was reaffirmed by IARC in October 2009.
- EU current formaldehyde classification: category 3-R40 "limited evidence of a carcinogenic effect". Proposal of the European Chemicals Agency (ECHA) to upgrade formaldehyde to a category 1-R45 carcinogen is open to public consultation and it will then pass through several committees till it becomes an EU law.
 - **US** EPA current classification: **probable human carcinogen (B1).** Draft toxicological review of formaldehyde-inhalation assessment released June 2010.

Re-evaluation of formaldehyde - II

- Numerous toxicological & cancer studies for formaldehyde since 1980. Major studies in Europe and USA still ongoing.
- CARB formaldehyde emission limits for composite wood products are in force since January 2009 and should apply throughout the US from January 2013.
 - Variation among national Occupational Exposure Limits (OEL) for formaldehyde around the world. The lowest OEL levels are established in Europe and range from 0.3 to 0.5 ppm.

Occupational Exposure Limits (1/3)

Country	Concentration, ppm	Туре
Australia	1.0	TWA
Austria	0.3	TWA
Belgium	0.3	Ceiling
Brazil	1.6	Ceiling
Canada-Alberta	0.75	TWA
Canada-British Columbia	0.3	TWA
Denmark	0.3	TWA & STEL
Finland	0.3	TWA
France	0.5	TWA

Source: Formacare. IARC

Occupational Exposure Limits (2/3)

Country	Concentration, ppm	Туре
Germany	0.3	TWA
Greece	2.0	TWA
Hong Kong	0.3	Ceiling
Ireland	2.0	TWA
Italy	0.3	Ceiling
Japan	0.5	TWA
Malaysia	0.3	Ceiling
Mexico	2.0	Ceiling
Netherlands	1.0	TWA

Source: Formacare. IARC

Occupational Exposure Limits (3/3)

Country	Concentration, ppm	Туре
Norway	0.5	TWA
South Africa	2.0	TWA
Spain	0.3	STEL
Sweden	0.5	TWA
Switzerland	0.3	TWA
United Kingdom	2.0	TWA
USA-ACGIH	0.3	Ceiling
USA-NIOSH	0.016	TWA
USA-OSHA	0.75	TWA

Source: Formacare. IARC

Formaldehyde Test Methods

Test Method	Standard, standard draft or method name
Chamber	EN 717-1, ASTM E 1333, ASTM D 6007, JIS A 1901, JIS A 1911, ISO 12460-1, ISO 12460-2
Gas Analysis	EN 717-2, ISO 12460-3
Flask Method	EN 717-3, AWPA method
Desiccator	ASTM D 5582, JIS A 1460, JAS 235, JAS 233, AS/NZS 4266.16, ISO 12640-4
Perforator	EN 120, ISO 12460-5
Other	Field and Laboratory Emissions Cell (FLEC), Dynamic Micro Chamber (DMC)

European Standards

Board class	HCHO limit	Test method
E1 - PB, MDF, OSB	Release ≤ 0,124 mg/m ³ air	EN 717-1
EI - PD, MDF, OSB	\leq 8.0mg/100g	EN 120
E1 - PW	Release ≤ 0,124 mg/m ³ air	EN 717-1
	\leq 3.5mg/h*m ²	EN 717-2
E2 - PB, MDF, OSB	Release > 0,124 mg/m ³ air	EN 717-1
LZ - PD, IVIDF, USD	>8.0 ÷ ≤30mg/100g	EN 120
E2 - PW	Release > 0,124 mg/m ³ air	EN 717-1
	> 3.5 \div ≤ 8.0mg/h*m ²	EN 717-2

Source: EN 13986 NOTE: E1 rolling average for half year <6.5mg/100g PB/OSB, <7mg/100g MDF

EPF - S

- Industry standard prepared by EPF and applied to its members
- Established a new class of low formaldehyde emitting panels: EPF-S
- Based on perforator (EN120) limit values for particleboard 4mg/100g and MDF 5mg/100g (thickness > 8mm)
- Recent proposal for limit value based on EN 717-1 (chamber method) of 0.065ppm (particleboard, MDF/HDF, OSB)

Japanese Standards

Board class	HCHO limit	Test method
F***/SE0	\leq 0.3mg/L	JIS A 1460
F***/E0	\leq 0.5mg/L	JIS A 1460
F**	≤ 1.5mg/L	JIS A 1460

Source: JIS A 5908 & 5905

F** class in Japan is more or less equivalent to European E1-classF*** and F**** are of much lower emission than the E1F**** emission is close to the emission of solid untreated wood

AS/NZ Standards

Board class	HCHO limit	Test method
EO - PB, MDF	\leq 0.5mg/L	AS/NZS 4266.16
E1 - PB	\leq 1.5mg/L	AS/NZS 4266.16
E1 - MDF	\leq 1.0mg/L	AS/NZS 4266.16
E2 - PB, MDF	\leq 4.5mg/L	AS/NZS 4266.16

CARB Standards

Effective Date	Phase 1 (P1) & Phase 2 (P2) Emissions Standards				
	HWPW-VC	HWPW-CC	PB	MDF	Thin MDF
01.01.2009	P1:0.08	-	P1:0.18	P1:0.21	P1:0.21
01.07.2009	-	P1:0.08	-	-	-
01.01.2010	P2:0.05	-	-	-	-
01.01.2011	-	-	P2:0.09	P2:0.11	-
01.01.2012	-	-	-	-	P2:0.13
01.07.2012	-	P2:0.05	-	-	-

Formaldehyde Emission Standards for Hardwood Plywood (HWPW), Particleboard (PB) and Medium Density Fiberboard (MDF), CARB 2008 Based on the primary test method [ASTM E 1333-96 (2002)] in ppm HWPW-VC: veneer core, HWPW-CC: composite core Source: CARB 2008, NOTE: Same as ANSI A208.1&2 for PB and MDF Chimar Hellas S.A.

CARB vs. European &

Japanese Standards

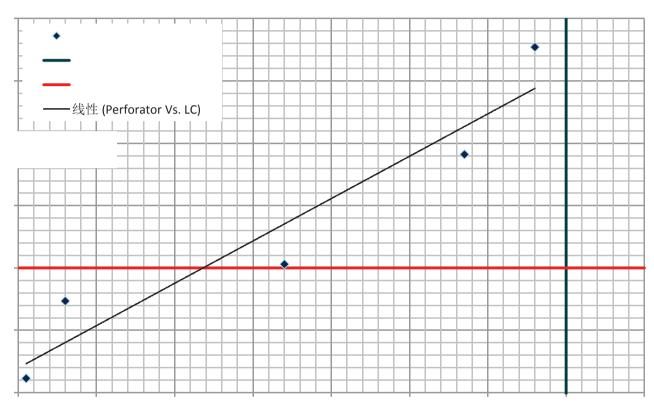
P1 (ppm)	E1	F***	F****
HWPW (0.08)	More	Comparable	Less
PB (0.18)	Less	Less	Less
MDF (0.21)	Less	Less	Less
P2 (ppm)	E1	F***	F****
HWPW (0.05)	More	More	Comparable
PB (0.09)	More	Comparable	Less
MDF (0.11)	Comparable	Less	Less

Values in parenthesis are the Phase 1 or Phase 2 standards in ppm. "More" means the proposed standard is "more stringent" than applicable E1, F***, F**** standards. Source: CARB 2008

CARB ULEF provisions

- "Ultra-Low-Emitting Formaldehyde (ULEF) resins":
- Average formaldehyde emissions consistently below the Phase 2 emission standards
- Less frequent emission tests of the products than otherwise required
- Possible qualification for an exemption from third party certification
- Labelling of the products as made using ULEF

ULEF Emission Target and Cap Values


Less frequent testing	PB	MDF	Thin MDF	HWPW
ULEF-target	0.05	0.06	0.08	0.05
ULEF-cap	0.08	0.09	0.11	0.05
TPC exemption	РВ	MDF	Thin MDF	HWPW
ULEF-target	0.04	0.04	0.04	0.04
ULEF-cap	0.06	0.06	0.06	0.05

Values in ppm. Source: CARB 2008

Thin MDF: CARB P2 vs. E1

All samples are CARB P2 but not E1!

LC values obtained through DMC and certified correlation

Formaldehyde emission reduction by CHIMAR HELLAS

High Performance gluing systems:

- Innovative resin and additive formulations
- Produced from controlled raw materials
- Best exploitation of the active ingredients during resin synthesis aiming no loss in productivity and minimal cost increase
- Efficient monitoring and control of the synthesis parameters

Data from "E0" MDF

"E0" MDF (14 mm), UMF + FS			
Press Factor, s/mm	As E1		
Resin Factor, %	20% higher than E1		
Board Density, kg/m ³	690-710		
Board thickness, mm	14.0-14.3		
IB, N/mm ²	0.6-0.7		
Formaldehyde content, EN 120, mg/100g dry board	2.5-3.0		
Cost Vs E1 € per m ³	+9		

Data from F***/E0 MDF

F***/E0 MDF (6 & 16mm), UF				
	6mm	16mm		
Press temperature, °C	180-190	180-190		
Press Factor, s/mm	As in E1			
Resin Factor, %	8.3	10.5		
Board Density, kg/m ³	790-810	680-700		
IB, N/mm ²	1.33 – 1.50	0.90 - 0.95		
MOR, N/mm ²	40-42	30-35		
Thickness swell, %	18-20	7-8		
Formaldehyde emission,	0	.3-0.5		
JIS A 1460, mg/L	0			
Cost Vs E1 € per m ³		0		

Data from F***/E0 MR MDF

F***/E0 MR MDF (18mm), U	MF
Press temperature, °C	190
Press Factor, s/mm	As E1
Resin Factor, %	13
Board Density, kg/m ³	700-720
IB, N/mm ²	1.0-1.2
Thickness swell, %	5.1-5.8
MOR, N/mm ²	37-40
MOR-A, N/mm ² (2h 70°C)	4.9-5.3
IB after cyclic test, N/mm ²	0.2-0.4
TS after cyclic test, %	5-7
Formaldehyde emission, JIS A 1460, mg/L	0.27-0.39
Cost Vs E1 MR € per m ³	+9

Data from F***/E0 MR thin MDF

F***/E0 MR MDF (4mm), MUF + FS	
Press Factor, s/mm	As E1
Resin Factor, %	18
Scavenger level, %	15
Board Density, kg/m ³	795-832
IB, N/mm ²	1.30-1.89
Thickness swell, %	4.2-9.1
Formaldehyde emission, JIS A 1460, mg/L	0.31-0.45
Cost Vs E1 MR € per m ³	+9

Data from F****/"SEO" MDF

F****/"SEO" MDF (16mm), UMF + FS	
Press Factor, s/mm	As E1
Resin Factor, %	16
Scavenger level, %	15, 20
IB, N/mm ²	0.9-1.1
Thickness swell, %	7.0-7.4
Formaldehyde emission, JIS A 1460, mg/L	0.27-0.29
Cost Vs E1 € per m ³	+12

Data from F****/"SEO" thin MDF

F****/"SEO" MDF (3mm), UMF	
Press temperature, °C	180-190
Press Factor, s/mm	As E1
Resin Factor, %	14
Hardener level, %	0-1.5
Board Density, kg/m ³	840-860
IB, N/mm ²	1.6-1.8
MOR, N/mm ²	50-60
Thickness swell, %	16-21
Formaldehyde emission, JIS A 1460, mg/L	0.26-0.28
Cost Vs E1 € per m ³	+9

Data from ULEF thin MDF

ULEF MDF (3mm), UF + FS	
Press Factor, s/mm	As CARB P1
Resin Factor, %	8
Scavenger level, %	20
Board Density, kg/m ³	880-930
IB, N/mm ²	1.6-1.8
MOR, N/mm ²	42-50
Formaldehyde emission, ASTM E 1333, ppm	0.03-0.04
Cost Vs CARB P1 € per m ³	+3

Data from F***/E0 PB

F***/E0 PB (16mm), UMF	
Press temperature, °C	210
Press Factor, s/mm	As E1
Resin Factor, %core/surface	8.5 / 9.5
Board Density, kg/m ³	630
IB, N/mm ²	0.42
MOR, N/mm ²	16.3
Thickness swell, %	12.1
Formaldehyde emission, JIS A 1460, mg/L	0.29
Cost Vs E1 € per m ³	+5

Data from F***/E0 MR PB

F***/E0 MR PB, MUF	
Press temperature, °C	210
Press Factor, s/mm	6.0
Resin Factor, %core/surface	8.5 / 9.5
Board Density, kg/m ³	642
IB, N/mm ²	0.61
Thickness swell, %	4.3
MOR, N/mm ²	18.2
MOR-A, N/mm ² (2h 70°C)	6.4
Formaldehyde emission, JIS A 1460, mg/L	0.27
Cost Vs MR E1 € per m ³	+3

Data from EPF-S PB

EPF-S PB (16mm), UMF	
Press temperature, °C	205
Press Factor, s/mm	As E1
Resin Factor, % core/surface	8.3 / 8.5
Board Density, kg/m ³	650-680
IB, N/mm²	0.40-0.50
MOR, N/mm²	13-14
Thickness swell, %	14-16
Formaldehyde content, EN 120, mg/100g	3.0-3.5
Cost Vs E1 € per m ³	+2

Data from ULEF PB

ULEF PB, UMF + FS	
Press Factor, s/mm	6.5
Resin Factor, % core/surface	8 / 10
Scavenger level, %	1.8-2.5
Board Density, kg/m ³	670-690
IB, N/mm ²	0.52-0.58
MOR, N/mm ²	15-18
Formaldehyde emission, ASTM E 1333, ppm	0.02-0.04
Cost Vs CARB P1 € per m ³	+5

Data from "CARB P2" HWPW-VC

"CARB P2" 9ply HWPW-VC (12mm), MUF

Press temperature, °C	135
Press Factor, min/mm	0.8
Resin Factor g/m ²	170
Shear Strength (Dry), N/mm ²	2.3
Wood Failure (Dry), %	100
Shear Strength (24h in 20°C water), N/mm ²	1.9
Wood Failure (Dry), %	94
Formaldehyde emission, ASTM E 1333, ppm	0.03
Cost Vs CARB P1 € per m ³	+3

Ensuring Cost Efficiency

To be able to produce cost efficiently boards with low emissions:

- Use of adhesives that are a result of intensive R&D
- Implement adequate process control in resin and board production
- Invest in new available technology

Summary

- Low emission MDF and PB (F***/E0, F****/"SE0", EPF-S, ULEF) were produced using an advanced aminoplastic resin with or without scavenger.
- There was no need to change the production parameters or plant settings.
- There was <u>no loss</u> in productivity nor significant increase of production cost.
- The board properties were not adversely affected by the introduction of low emission resin system. In many cases there was even an improvement of board properties.
- The low emission quality can be achieved even in very specific cases such as the thin or moisture resistant panel products.

Conclusions

- Boards with low emissions are value added (higher quality) products.
 - It is possible to meet the new demands for very low formaldehyde emission from composite panel products with the use of properly formulated **aminoplastic resin** systems, without any deterioration in panel performance or significant modification of plant operating conditions or need to employ other types of binders.
- The formaldehyde emission values that can be obtained are at the level of natural wood.

Final Remarks

- **CHIMAR** has reduced panel formaldehyde emissions by developing innovative resin systems, using advanced resin synthesis technologies and components that are well studied and controlled.
- Through its worldwide experience, network of customers and collaborating research institutes,
 CHIMAR develops and implements integrated solutions to the formaldehyde emission issue.
- **CHIMAR** research and development is ongoing and the publication of further positive data on low emission panels will follow.

Location & Contact Details

Sofouli 88, 55131 Thessaloniki, GREECE Tel: +30 2310 424167, Fax: +30 2310 424149 e-mail: office@ari.gr www.chimar-hellas.com

Thank You!

