ADVANCEMENT IN SUSTAINABLE RESIN BINDERS FOR WOOD COMPOSITES USING ENGINEERED BIOPOLYMERS

Eleftheria Athanassiadou from CHIMAR (Greece)

Chris Anderson from EcoSynthetix[®] (Canada)

August, 2014

Overview

EcoSynthetix[®]

- Beyond Emissions
- Engineered Biopolymers

CHIMAR

- Applications in Wood Composites

Questions and Answers

Our VISION

To be one of the world's leading technology and market developers of biobased materials through value-added substitution of fossil-based products. Our enterprise will benefit society as a result of our products being sustainable, based on green chemistry and a reduced carbon footprint.

Beyond the Elimination of Highly Regulated Chemicals

- Strong market driver toward alternatives to highly regulated chemicals because of "sustainability".
 - Architects: LEED[®] program
 - Consumer products / retailers: Cradle to Cradle®
 - Underwriters Laboratories, UL: Environmental Product Declaration (EPD)
 - Building products manufacturers: Fiberglass example
- Fiberglass insulation leader example
 - "58% total recycled content"
 - "Contains more than 99% natural ingredients"
 - Minor mention of the elimination of highly regulated chemicals

It is no longer just about emissions.

Going forward it will be about sustainability.

Industrial Use of "Traditional" Biopolymers

"Traditional" biopolymers performance can be deficient when compared to classical synthetic polymers

Introduction of EcoSynthetix[®] Engineered Biopolymers

Engineered biopolymers can be tailored for specific applications and replace many synthetic chemistries.

How We Are Different From Other Biochemical Players

Patented Formula

Patented Process

Patented Product

EcoSynthetix[®] Engineered Biopolymers with Tailored Properties and Functionalities

Able to customize chemistry to meet the specific requirements of several unique applications.

- Physical properties: Color, viscosity, pH
- Mechanical properties: Tensile strength, flexibility, rigidity
- Moisture resistance: Humidity, soaking or long term weathering
- Cure profiles: Defined activation temperatures for individual process
 equipment

Tailored Functionality Through Chemical Modifications Applied

Over 100,000,000 pounds sold into Paper Coating Industry

Functional Particles with Excellent Binding Properties

EcoSynthetix Engineered Biopolymers Demonstrate a High Degree of Compatibility

Demonstrated in Atom Force Microscopy (AFM)

Incumbent Synthetic Polymers

Engineered Biopolymers Vs. Traditional Biopolymers Replacing Synthetic Chemistries

Product Characteristic	"Traditional" Biopolymers	Engineered Biopolymers
Quality / Consistency	Seasonal Crop Variability	ISO Certified Continuous Manufacturing
Size / Function	Larger molecules with limited functionality	Smaller functional particles
Processing	"Cooking" or other modifications typically needed	Dispersions broad range of chemical compatibility
Application	Fillers for synthetic chemistry	Replacement for synthetic chemistry

Overview

EcoSynthetix[®]

- Beyond Emissions
- Engineered Biopolymers

CHIMAR

– Applications in Wood Composites

Questions and Answers

CHIMAR is Committed to INNOVATION

 CHIMAR is the world leader in supplying industrial knowhow for producing resins and resin additives for the manufacture of wood-based panels and impregnated papers. It also offers globally services for plant installation for the production of resins and resin additives as well as their raw materials.

Global Technology Provider Serving the Resin & Wood Panel Industry

Lab, Pilot and Industry Trials

ALL trials "2:1 Substitution" was demonstrated:

TWO parts urea formaldehyde with ONE part engineered biopolymer ¹⁵

Internal Bond (IB) vs Biopolymer Substitution Levels Lab Evaluation in Particleboard

Contour plots of Internal Bond (IB) vs. Press Factor, s/mm; Substitution, %

Modulus of Rupture vs Biopolymer Substitution Level Lab Evaluation in Particleboard

Contour plots of Modulus of Rupture (MOR) vs. Press Factor, s/mm; Substitution, %

Pilot Scale MDF Trial Results

Conditions

Panel Product	Single Layer MDF				
Panel density, kg/m ³	800				
Resin type	UF 096D				
Press temperature, °C	160				
Wood mix: 60% lodgepole pine, 40% white spruce with a small % of balsam fir					

Results

Description / Property	Values		S
% replacement (2 to 1 substitution)	30%	60%	0%
Average Density, kg/m³	800	810	800
Average IB, N/mm²	0.50	0.62	0.60
Average MOR, N/mm ²	19	18	19

- ✓ Demonstrated 2:1 substitution
- ✓ Equivalent density
- ✓ Equivalent Internal Bond (IR) and Modulus of Rupture (MOR)
- ✓ Up to 60% replacement at pilot facility

* Results from Alberta Innovates Technology Futures (AITF)

Industrial Scale Particle Board and MDF Trial Results

Industrial Samples	MDF			Particleboard		
% replacement (2 to 1 substitution)	20%	30%	0%	30%	40%	0%
Average Density, kg/m³	700	710	720	680	710	700
Average IB, N/mm ²	0.68	0.67	0.68	0.56	0.46	0.50
Average MOR, N/mm ²	26.6	28.3	27.2	14	12	13

- ✓ Demonstrated 2:1 substitution
- ✓ Equivalent density
- ✓ Equivalent internal bond (IR) and Modulus of Rupture (MOR)
- \checkmark Up to 40% substitution at industrial trials

Latest Lab Data 100% Replacement in Particle Board

Description	UF / UmF	50% sub	100% face, 50% core	100%ECO
Face Resin on wood (UmF 0.85/066)	10.0%	5.0%		
Face ECO on wood (Gen 1)		2.0%	5.0%	5.0%
Core Resin on wood (UF 1.10)	10.0%	5.0%	5.0%	
Core ECO on wood (Gen 2 cross linker)		2.0%	2.0%	5.0%
IB Average (MPa)	0.32	0.33	0.34	0.35
Density Average (Kg/m ³)	672	682	688	679
2h Swelling Average (%)	7.3	7.3	7.4	6.1
24h Swelling Average (%)	32.4	29.2	30.4	30.8
MOR (MPa)	8.2	8.8	10.8	11.5
MOE (MPa)	1998	1964	2001	2013
Thickness (mm)	15.2	15.2	15.2	15.2
Perforator Value (mg/100g)	3.4	3.6	2.5	0.8
Gas Analysis (mg/m ² h)	1.5	1.2	0.9	0.5

Producing a wood composite board that is equal or better than the UF / UmF standard in mechanical, moisture and emissions board properties.

Now is the Time to Consider EcoSynthetix[®] Engineered Biopolymers

- ✓ Compatibility with incumbent resin technologies with 10% to 100% Substitution.
- Existing equipment utilized with seamless transition between resin systems.
- ✓ Mechanical properties are maintained compared to incumbent resin systems.
- ✓ Significant improvement in bonding efficiency.
- ✓ Carbon footprint reduction from 33% to 75%.
- ✓ New generations of engineered biopolymers achieving 100% substitution.
- ✓ Strong technical team to support your journey.

The ultimate goal of a cost effective sustainable binder for wood composite boards is in reach and being trialed today

Collaboration and open innovation provides the path forward to a sustainable economy.

We welcome the opportunity to determine which products are best for your requirements and sustainability goals.

www.chimarhellas.com EAthan@ari.gr Q/A

1

www.ecosynthetix.com Canderson@ecosynthetix.com

Thank you

Eleftheria Athanassiadou from CHIMAR Charles Markessini from CHIMAR

Chris Anderson from EcoSynthetix Somaieh Salehpour from EcoSynthetix Doug Ireland from EcoSynthetix Alexander Tseitlin from EcoSynthetix

Introduction to CHIMAR

Chimar Hellas S.A.

FACTS & FIGURES:

- Expertise >37 years in 40 countries
- Chemicals of our technology in > 5% of global annual wood panel production
- 25-strong team (chemists, chemical engineers, forest & wood scientists)
- Participation in >40 international R&D projects and >10 Science & Technology networks

ACTIVITIES:

- Developer and supplier of technology for the industrial production and application of adhesive resins and additives for wood-based panels
- Engineering & equipment procurement services for formaldehyde/UFC/resin/chemical additives plants
- R&D for third parties, Technical support for field industries (remotely and on-site), Testing, Evaluation, Consulting, Training, Accredited formaldehyde testing (EN ISO/IEC 17025)
- Specialty chemicals production on demand (Hardeners, FR, Wetting agents)
- Industrial Equipment Representation
- ✓ Acting globally, helping locally!