

LIGNIN BASED BINDERS: AN INDUSTRIAL REALITY, LATEST DEVELOPMENTS

Sanna Valkonen, UPM Biochemicals

11th International Conference on Wood Adhesives, Oct 25-27, 2017 in Atlanta, Georgia, USA

Strong Interest in Lignin And Lignin Based Resins For Wood Products @UPM

UPM-Kymmene, group sales 2016 10.5 bn €, listed on Helsinki stock exchange

UPM Biorefining

Biofuels Pulp Plantation operations

3.6 million tonnes of pulp **1,3** million tonnes of lignin in black liquor

UPM Biochemicals

Focus on wood-based biorefinery concepts

Lignin Team working on lignin application development since more than 8 years

Focus on lignin-based resins for wood products.

Excellent collaboration with current and future lignin producers.

UPM Plywood

Largest plywood producer in Europe with ~ 1 mio m³ capacity

Positioned as quality-leader in birch plywood (transportation, concrete formwork), also for special applications like LNG

access to pilot facilities
sparring

CHIMAR 🇳

UPM Biochemical's LPF Resin Technology

- Developed and validated in cooperation with Europe's largest phenolic resin consumer, UPM Plywood, and Chimar Hellas, allows for up to 80% substitution of petro-based phenol, without compromising performance.
- We offer UPM BioPiva[™] lignin product, including access to our lignin based resin technology
- Strong patent portfolio
- Versatile for broad range of phenolic resin applications and production configurations

Benefits:

cost benefit

renewable content

non-toxic

less FA

Structure of softwood-lignin, according to Laurichesse, S.; Avérous, L., Progress in Polymer Science 2014, 39 (7), 1266-1290

UPM WISA® BIOBOND by UPM Plywood

Officially launched in Oct 2nd 2017 http://www.wisabiobond.com/

0000

I'M THE NEW GENERATION

Meet the new WISA® BioBond >

 The underlying lignin-phenol resin technology, based on UPM BioPiva[™] lignin raw material is ready to be rolled out globally, through UPM Biochemicals, in co-operation with selected industry partners.

Lignin Based Resins Running Smoohly in Industrial Production

- Birch plywood production on roller line no change in production parameters needed
 - > open time up to 40 min
 - glue factor ~155 g/m² (per single glue line)
 - prepress 6-8 bar/ 8min
 - ➢ hot press 130°C

- press factor 0.75 min / mm
- Panel thicknesses from 6.5 mm to 30mm
- Glue mix stable and workable up to 48 hours
- Good runnability!

mechanical testing EN 314-1	panels with PF-reference	panels with LPF-500 resin*						
Shear strength after soaking [N/mm ²]	2,5	2,5						
Shear strength after boiling [N/mm ²]	1,9	1,9						
WF [%] after boiling	>90	>85						
3-point bending test (along grain direction)								
Bending strength [N/mm ²]	72	76						
Modulus [N/mm ²]	8350 8650							

*50% phenol replacement

DSC Shows High Resin Reactivity

Formaldehyde Emissions from Panels Are Typically Very Low

Formaldehyde release EN 717-2

Determination of formaldehyde release by gas analysis method

LPF500 resin	Average emission [mg/m²/h]		
Birch uncoated, 9-ply, 12mm	0.11*		
PF resin reference	0.1- 0.2*		
*E1 limit by EN717-2 \leq 3.5 mg HCHO/(h·m ²)			

Formaldehyde release EN 717-1 - chamber method

LPF500 resin	formaldehyde conc., ppm	
Birch uncoated, 9-ply, 12 mm;	0.01**	
PF resin reference Birch uncoated, 9-ply, 12mm	0.01-0.02**	

determinated by Fraunhofer WKI **E1 limit by EN 717-1 \leq 0.124 mg/m³ air / \leq 0.1 ppm

LPF resin Formulations, Now Running Also on Curtain Coaters

- Surface tension properties of LPF resins are different compared to PF resins
- Can be adapted by using commercial surfactants to obtain stable curtain
- Panel properties equal to reference

Pilot curtain coater unit from Raute

PF based formulation

LPF based formulation

LPF resin Formulations, Now Running Also on Curtain Coaters

- > 3-ply, 9.5 mm panels from North-American spruce
- Curtain coater: glue viscosity 2100-2600 cp (90 °F)
- Glue factor 126-137 g/m² (26-28 lbs/1000f²)
- Line speed 109-113 m/min (360-370fpm)
- Prepress 6-8 bar/ 6min
- Hot press 284°F
- Press factor 0.5 min / mm

	PS1 vacuum pressure test					
LPF500 resin based formulation	No of panels	No of Plies	Thickness, mm	Shear, psi	WF, %	
	20	3	9.5	143	>90	
	PS1 Boil and dry test					
	No of panels	No of Plies	Thickness, mm	Shear, psi	WF, %	
	20	3	9.5	132	>90	

Vacuum pressure test

Boil-dry-boil test

Further Applications on the Way!

OSB

Thermally fused laminates

Laminated veneer lumber

Surface Films

Summary

Lignin, a 100% bio-based, non-toxic, non-hazardous raw material is available, in industrial quantities, at constant and conrolled quality. Various types and modifications will further broaden the application spectrum.

Focus on implementation Lignin-based phenolic resins are becoming the ,new normal⁴, in the global plywoodindustry because they

work, while providing additional benefits to resin producers and their customers.

Aiming higher

Lignin and lignin-based resins will open the door towards a new generation of binders, also for other applications in the wood-products industry.

The Biofore Company