## INDUSTRIAL AMINO ADHESIVES SATISFYING STRINGENT FORMALDEHYDE LIMITS

Eleftheria Athanassiadou Charles Markessini and Sophia Tsiantzi Dubai, UAE, 15/11/2015



**BINDING INNOVATION** 



# Structure

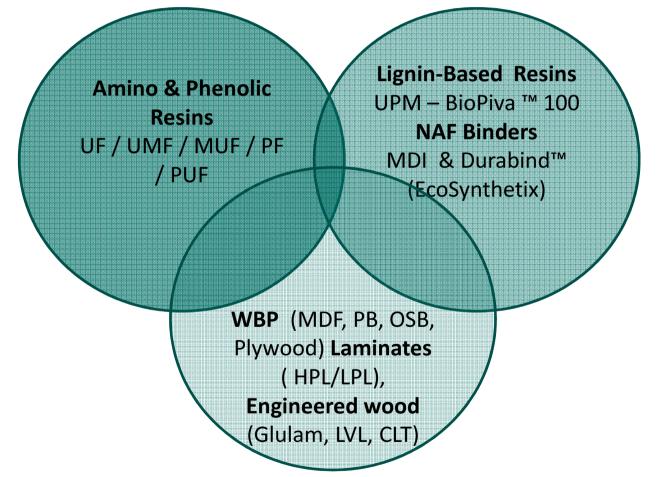
- 1. Meet CHIMAR
- 2. Wood-based panels & Adhesives for them
- 3. The formaldehyde issue
- 4. Amino adhesives for stringent requirements



# **Summary of CHIMAR activities**

#### **CORE Business**

- **1** Development & Application of Industrial Technology for Binders & Additives
- 2 Engineering Services & Equipment Supply for resin plants
- **3** Technical Support & Training Services for resin & panel manufacturers
- 4 **R&D Services for 3<sup>rd</sup> parties**
- **5** Participation in EU research projects


#### **Specialty SERVICES**

- **1** Chemicals production upon request
- 2 Accredited testing (EN 17025)
- **3** Resin, Additives & Board testing and evaluation
- 4 Equipment Representation



# **CHIMAR Industrial Technology**

For the PRODUCTION AND APPLICATION of binders:



CHIMAR advantage: productivity, consumption, production cost!

38 Years / 40+ Countries



# **CHIMAR in figures**

- $\checkmark$  Over <u>38 YEARS</u> expertise in <u>40+ countries</u>
- ✓ Know-how applied in <u>100+ industrial sites</u>
- ✓ Over <u>1 MT resin</u> per year is produced under CHIMAR technology
- ✓ Over <u>10% of global wood panel production</u> uses our services
- ✓ Participation in <u>50+ EU funded projects & networks</u>
- ✓ Strong team of 28 highly motivated experts

# Wood-based panels (WBP)



Medium Density Fibreboard (MDF), Particleboard (PB), Oriented Strand Board (OSB), Plywood (PW)

Wood particles/fibres/strands or veneers are mixed/coated with a mix of resin and additives to form a composite mat. The composite mat is hot-pressed to form a panel.

38 Years / 40+ Countries

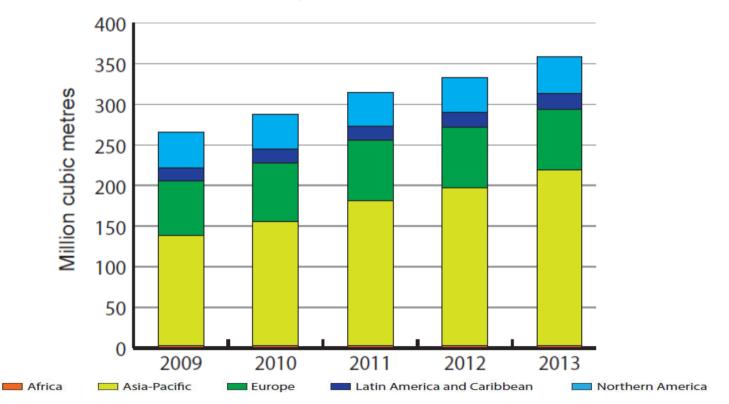




# Applications of wood-based panels







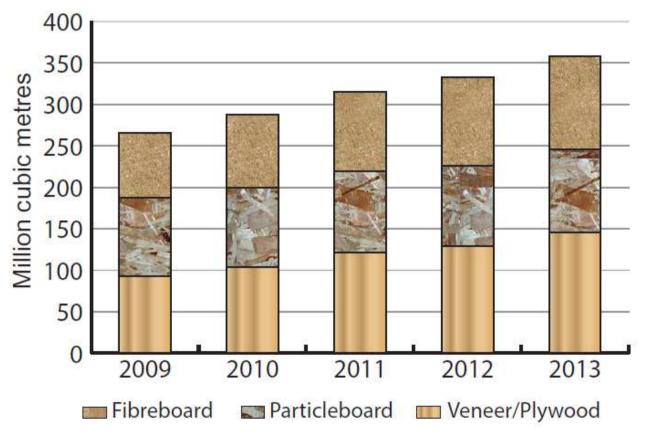



38 Years / 40+ Countries



## **Global WBP production per region\***




#### Wood-based panel production

\*Source: FAOSTAT database, http://faostat3.fao.org/browse/F/FO/E)

# Global WBP production per product category\*



Wood-based panel production

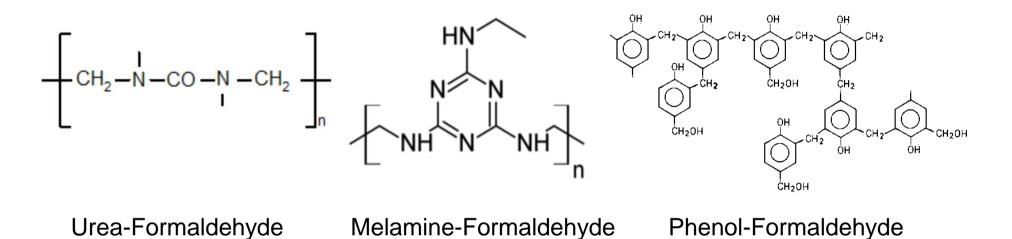


\*Source: FAOSTAT database, http://faostat3.fao.org/browse/F/FO/E)



# **Adhesives for WBP**

Amino resins: Urea Formaldehyde, Melamine Formaldehyde, Melamine Urea Formaldehyde


**Phenolic resins: mostly Resols** 

Polyisocyanates: MDI, TDI

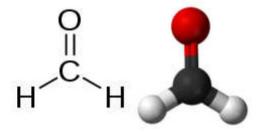
TOP APPLICATION: as wood adhesives in the manufacture of WBP!



# **Formaldehyde-based Resins**



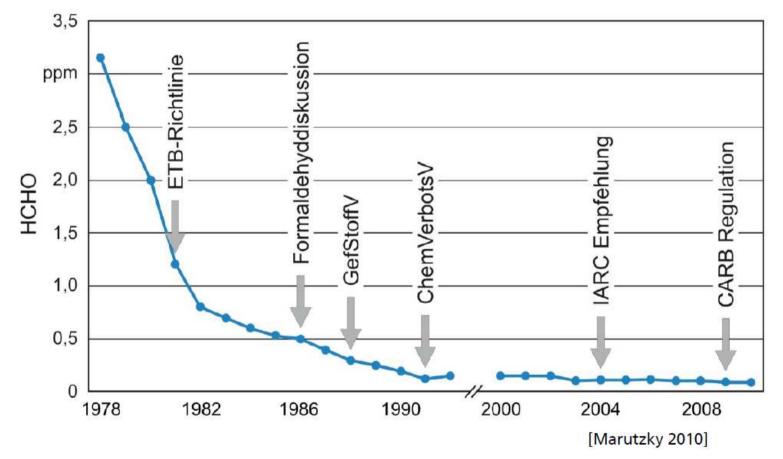
- > Thermosetting polymers derived from Formaldehyde, Urea, Melamine, Phenol
- Main type of wood adhesives: performance, applicability and cost




# **Re-classification of formaldehyde**

►IARC WHO recommended classification of formaldehyde in Group 1-"carcinogenic to humans" (monograph 88/2006, monograph 100F/2012). This recommendation is not legally binding.

**ECHA** (European Chemicals Agency) reclassified formaldehyde in category **1B-presumed human carcinogen** (June 2014 but transition period until 1 January 2016).


**>US EPA** considers formaldehyde a **probable human carcinogen Group B1.** Draft toxicological review of formaldehyde-inhalation assessment (June 2010) supports carcinogenic effects but it is not finalised yet. **CARB-II** formaldehyde emission limits for composite wood products apply throughout the US from **January 2013**.



Formaldehyde molecule



# Reduction of WBP formaldehyde emission due to the evolution of regulations





### Formaldehyde Test Methods

| Region    | Method                     | Standard                                  | Units              | Application                     |
|-----------|----------------------------|-------------------------------------------|--------------------|---------------------------------|
|           | Chamber                    | EN 717-1                                  | ppm                | All panel types                 |
| Europe    | Gas analysis<br>Perforator | EN 717-2<br>EN 120                        | mg/h*m²<br>mg/100g | All panel types<br>PB, MDF, OSB |
| Australia | Desiccator<br>Perforator   | AS/NZS 4266.16<br>AS/NZS 4266.15 / EN 120 | mg/L<br>mg/100g    | PB, MDF<br>PB, MDF              |
| N.America | Large<br>chamber           | ASTM E1333                                | ppm                | All panel types                 |
| Japan     | Desiccator                 | JIS A 1460                                | mg/L               | All panel types                 |



# **Formaldehyde Limits for WBP**

| Region     | Class                       | Product Standard                          | Limit (Test method)                                  | Application                     |
|------------|-----------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------|
| Europe     | E1                          | EN13986                                   | 0.1ppm (EN 717-1)<br>8.0mg/100g (EN120) <sup>1</sup> | All panel types<br>PB, MDF, OSB |
| N. America | CARB P2 <sup>2</sup>        | ANSI A208.1 for PB<br>ANSI A208.2 for MDF | 0.05 ppm<br>0.09 ppm<br>0.11 ppm<br>(ASTM E1333)     | HWPW<br>PB<br>MDF               |
| Japan      | F**<br>F***/E0<br>F****/SE0 | JIS A 5908 PB<br>JIS A 5905 FB<br>JAS PW  | 1.5mg/L<br>0.5mg/L<br>0.3mg/L<br>(JIS A 1460)        | All panel types                 |

<sup>1</sup>E1 rolling average for half year <6.5mg/100g PB/OSB, <7mg/100g MDF

<sup>2</sup> Ultra-Low-Emitting Formaldehyde (**ULEF**) resins: formaldehyde emissions below 0.04ppm



## Solutions for Formaldehyde Emission Reduction in Amino Adhesives

Advanced technologies for the synthesis of melaminebased adhesives, enabling optimum use of the melamine and other active ingredients, to obtain resins with the target gluing and emission performance.

Annovative systems of melamine-based resins and chemical additives, the synergistic action between them allowing the production of wood-based panels with no loss in productivity and no or minimal cost increase.



## Melamine in Adhesives for Optimum Panel Performance & Formaldehyde Emission Reduction

| Class    | PB standard | PB moisture<br>resistant | MDF standard | MDF moisture<br>resistant |
|----------|-------------|--------------------------|--------------|---------------------------|
| E1/F**   | 0-2         | 11-13                    | 0-2          | 2-4                       |
| E0/F***  | 4-6         | 15-18                    | 2-4          | 6-8                       |
| SE0/F*** | 13-15       | 28-30                    | 4-6          | 16-20                     |

#### % Melamine in adhesive



# Data from "E0" PB

| F***/E0 PB, UMF                         |           |
|-----------------------------------------|-----------|
| Press temperature, °C                   | 210       |
| Press factor, s/mm                      | As E1     |
| Resin factor, % core/surface            | 8.5 / 9.5 |
| Target density, kg/m <sup>3</sup>       | 630       |
| IB, N/mm <sup>2</sup>                   | 0.42      |
| MOR, N/mm <sup>2</sup>                  | 16.3      |
| Thickness swell, %                      | 12.1      |
| Formaldehyde emission, JIS A 1460, mg/L | 0.29      |
| Cost Vs E1 € per m <sup>3</sup>         | +5        |



# Data from "E0" MR PB

| F***/E0 MR PB, MUF                      |           |
|-----------------------------------------|-----------|
| Press temperature, °C                   | 210       |
| Press factor, s/mm                      | 6.0       |
| Resin factor, % core/surface            | 8.5 / 9.5 |
| Target density, kg/m <sup>3</sup>       | 642       |
| IB, N/mm <sup>2</sup>                   | 0.61      |
| Thickness swell, %                      | 4.3       |
| MOR, N/mm <sup>2</sup>                  | 18.2      |
| MOR-A, N/mm² (2h 70°C)                  | 6.4       |
| Formaldehyde emission, JIS A 1460, mg/L | 0.27      |
| Cost Vs MR E1 € per m <sup>3</sup>      | +3        |



# Data from "SEO" PB

| CARB-ULEF/SE0 PB, UMF + FS              |           |
|-----------------------------------------|-----------|
| Press factor, s/mm                      | 6.5       |
| Resin factor, % core/surface            | 8 / 10    |
| Scavenger level, %                      | 1.8-2.5   |
| Target density, kg/m <sup>3</sup>       | 670-690   |
| IB, N/mm²                               | 0.52-0.58 |
| MOR, N/mm <sup>2</sup>                  | 15-18     |
| Formaldehyde emission, ASTM E 1333, ppm | 0.02-0.04 |
| Cost Vs CARB P1 € per m <sup>3</sup>    | +5        |



# Data from "E0" MDF

| E0 MDF, UMF + FS                                   |                    |  |  |
|----------------------------------------------------|--------------------|--|--|
| Press factor, s/mm                                 | As E1              |  |  |
| Resin factor, %                                    | 20% higher than E1 |  |  |
| Target density, kg/m <sup>3</sup>                  | 690-710            |  |  |
| IB, N/mm <sup>2</sup>                              | 0.6-0.7            |  |  |
| Formaldehyde content,<br>EN 120, mg/100g dry board | 2.5-3.0            |  |  |
| Cost Vs E1 € per m <sup>3</sup>                    | +9                 |  |  |



# Data from "E0" MR MDF

| F***/E0 MR MDF, UMF                     |           |
|-----------------------------------------|-----------|
| Press temperature, °C                   | 190       |
| Press factor, s/mm                      | As E1     |
| Resin factor, %                         | 13        |
| Target density, kg/m <sup>3</sup>       | 700-720   |
| IB, N/mm <sup>2</sup>                   | 1.0-1.2   |
| Thickness swell, %                      | 5.1-5.8   |
| MOR, N/mm <sup>2</sup>                  | 37-40     |
| MOR-A, N/mm² (2h 70°C)                  | 4.9-5.3   |
| Formaldehyde emission, JIS A 1460, mg/L | 0.27-0.39 |
| Cost Vs E1 MR € per m <sup>3</sup>      | +9        |



## Data from "SE0" thin MDF

| F****/SE0 MDF (3mm), UMF                |           |
|-----------------------------------------|-----------|
| Press temperature, °C                   | 180-190   |
| Press factor, s/mm                      | As E1     |
| Resin factor, %                         | 14        |
| Hardener level, %                       | 0-1.5     |
| Target density, kg/m <sup>3</sup>       | 840-860   |
| IB, N/mm <sup>2</sup>                   | 1.6-1.8   |
| MOR, N/mm <sup>2</sup>                  | 50-60     |
| Thickness swell, %                      | 16-21     |
| Formaldehyde emission, JIS A 1460, mg/L | 0.26-0.28 |
| Cost Vs E1 € per m <sup>3</sup>         | +9        |



# **Highlights & Conclusions**

By application of CHIMAR technology there was no deterioration in wood panel performance or significant modification of the operating conditions of the board manufacturing plant or need to employ other types of binders.

Formaldehyde emission values at the level of natural wood can be obtained by CHIMAR technology at no sacrifice of the production cost.

Through its worldwide experience, network of customers and collaborating research institutes, CHIMAR develops and implements integrated solutions for the wood-based panel industry.



#### Licensing technology - 38 years in 40+ countries





### **Location & Contact Details**

Eleftheria Athanassiadou R&D Support and IP Protection Manager

88 Sofouli str., 55131 Thessaloniki, GREECE

Tel: +30 2310 424167

Fax: +30 2310 424149

e-mail: eathan@ari.gr, office@ari.gr &

info@ari.gr

www.chimarhellas.com







**BINDING INNOVATION**