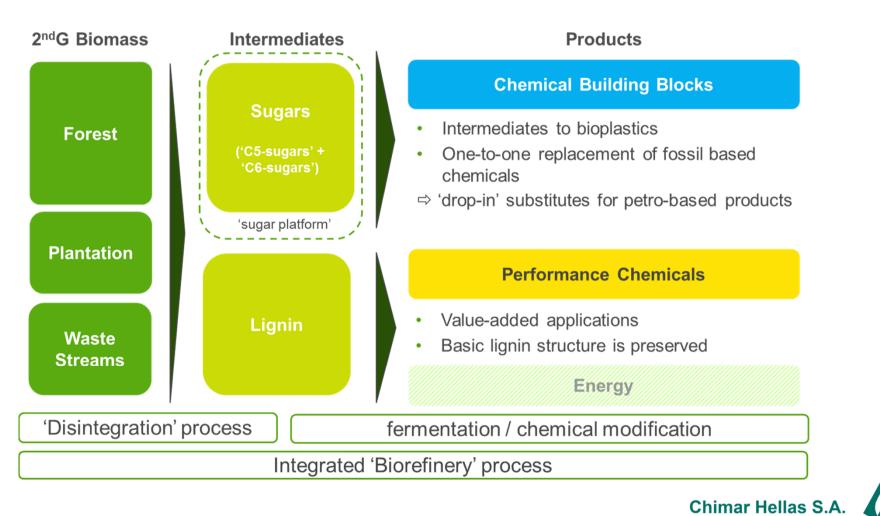


LIGNIN BASED BINDERS -AN INDUSTRIAL REALITY

Dr. Christian Hübsch, UPM GmbH Charles Markessini (MSc), Chimar Hellas


UPM Biorefining Pulp Plantations Biofuels **UPM Plywood UPM Paper Asia** Sawmills Plywood • Fine papers in China products • Label papers globally Turnover 2013: EUR 10 billion Personnel: 21,000 **UPM Paper ENA** Shareowners: over 90,000 **UPM** Raflatac Magazine papers in Europe and Label materials for product and the USA information labeling Newsprint and RP 31 Purus Phormogles RP 31 fine papers in Europe **UPM Energy UPM Biocomposites** • Hydro-, nuclear- and condensing power (incl. shares in energy companies) **UPM Biochemicals** Electricity production and trading

UPM Today

UPM Biochemicals Approach – Add Value to 2ndG Biomass through Chemical Building Blocks and Performance Chemicals

Partnership in lignin-based resins with Chimar Hellas

Lignin

- Structural material to add strength and to cell walls (20-30% of dry wood matter)
- Origin (e.g. softwood vs. hardwood) and separation process strongly determines properties of technical lignin
- In existing processes the lignin from kraft processes is usually burned for energy production
- Today high quality kraft lignin's can be separated utilizing using industrially proven technology

Current and Future Sources of Lignin – know-how about structure-property relations is crucial

Lignosulfonates

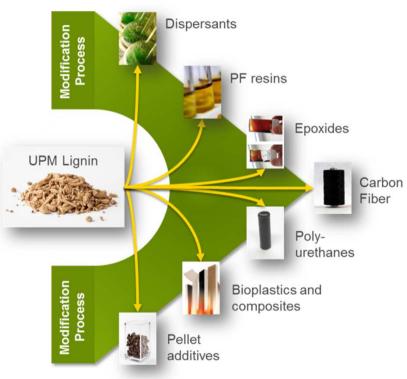
- •By-product from sulfite pulping process
- •Often high content of inorganics and residual carbohydrates
- •High molecular weight and sulfonate functionality limit its applications in resins

Kraft Lignin

- •By-product from kraft pulping process
- •Commercially accessible via LignoBoost process
- •High purity levels and consistent product quality
- •High value applications ready to enter to market

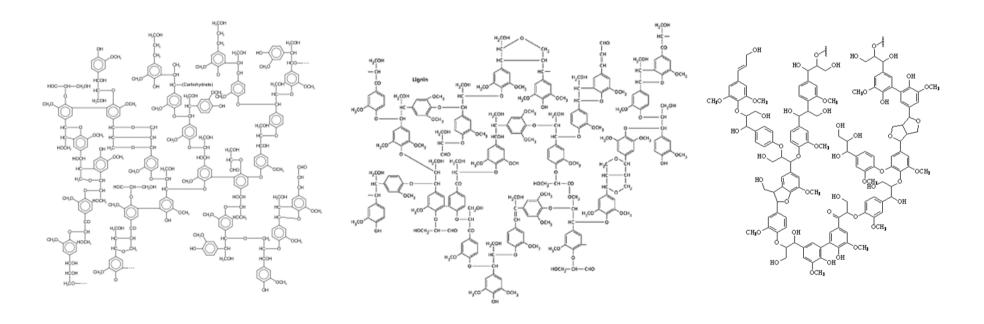
'Biorefinery Lignin'

- •Originating from various different processes, e.g organosolv-type or enzymatic hydrolsis)
- •Not commercially accessible today
- •Bio-mass type and biorefinery process determine product properties


Kraft Lignin is Now Available in Commercial Quantities

- 2013 the first commercial LignoBoost (Valmet) plant was started up 2013 by Domtar, Plymouth/NC
- As of 1st August 2014, UPM is exclusive distributor of Domtar BioChoice[™] in Europe

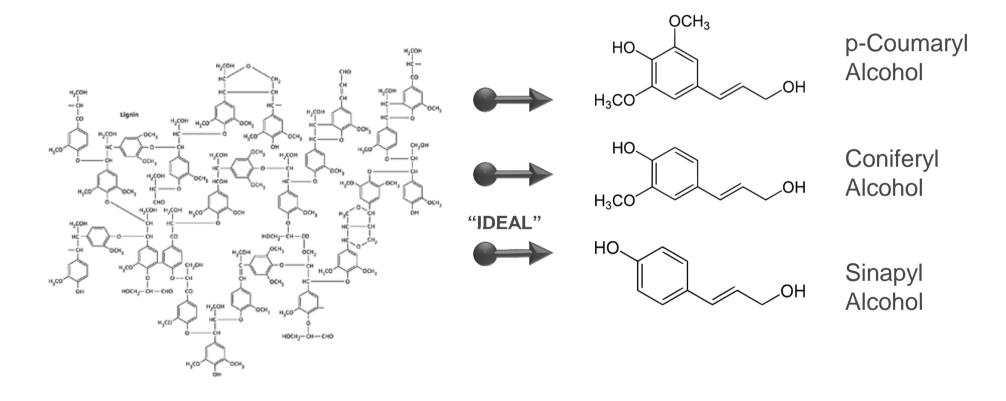
- Kraft lignin can be used as raw material for various applications
- UPM Biochemicals has developed significant know-how in lignin analytics, structure-property relations, fractionation, purification, modification and applications.



The Task: Can Lignin Be Used In PF-based Wood Adhesives?

According to literature: yes In practice: not more than 20% phenol replacement

Attempt 1: Replace toxic liquid with benign brown powder but the result was rather chewable!!



Attempt 2: Chemical treatment of lignin

In theory, breaking down lignin into smaller fragments should increase reactivity.

Properties of resins from chemically treated lignin

ADVANTAGES:

- Viscosity increase was observed in alkaline environment thus:
 - A reaction takes place!
 - A "resin" is produced!
- 5-ply Birch plywood produced was classified as class 3 (Exterior Uncovered) according to EN 314-2:1993

DISADVANTAGES:

- Low reactivity (Gel time 100°C: 100min.)
- Viscosity tripled in a week at 20°C
- Plywood produced but low tack and wood failure was zero

Attempt 3: Partial replacement of phenol by activated lignin (50%)

• A PFL adhesive was formulated with acceptable properties and performance!

Application	Plywood
Phenol substitution level	50%
Solids, %	43.4
Viscosity 25°C, mPa•s	290
pH 25°C	12.6

Product	9-ply 12mm birch plywood
Press factor	0.75min/mm
Press temperature	130ºC
Open time	Up to 30 minutes
Tack	10 / 10
Waiting time	Up to 3 hours
Resin in Glue mix	32.5%
Glue factor	150g/m ²

Mechanical Testing

Pre-treatment, EN 314-1:2004	Soaking 5.1.1	Cooking 5.1.3			
Press Factor, min/mm	0.75				
Top glue line					
Fv, N/mm ²	2.06	1.84			
%W	96	96			
Middle glue line					
Fv, N/mm ²	2.03	1.68			
%W	95	98			
Bottom glue line					
Fv, N/mm ²	2.26	1.92			
%W	99	99			

Pilot trial in South America 50% Phenol Replacement

veneers	Eliotti Pine
Daily production, m ³	250
% Resin solids in glue mix	28.0%
Glue factor, liquid g/m ²	180
Maximum assembly time, min	50
Thickness to test, mm	18
No. of veneers	5
Veneer thickness, mm	1.9
Pressing temperature, °C	130
Press factor, min/mm	0.78

auto-clave		cyclic test	
Fv, N/mm ²	%W	Fv, N/mm ²	%W
1.31	82	1.18	82

Applications beyond wood products Industrial example: mineral wool @20% phenol replacement

ID	Sample ID	thickness [mm]	density [kg/m ³]		tensile strength [kPa]		compressive strength [kPa]		point load [N]	
PF resin	2.1.9		153.9	9			68.9		809	
	2.1.10		153.5		24.2		67.1		655	
	2.1.11	50	151.2	152	33.3	26.6	67.1	65.0	840	701
	2.1.12	50	150.5	4	23.5	20.0	63.0	05.0	550	701
	2.1.13		153.4		25.4		57.1		674	
	2.1.14		156.3				66.8		678	
PFL	2.2.15		143.9	143.9 149.8			64.2		692	
	2.2.16		149.8		39.9		69.7	-	738	
	2.2.17	50	145.8	117	22.5	27.1	66.1	65.3	724	717
resin	2.2.18	50	143.0	143.0 147	23.1	63.5	00.3	681	/ / /	
	2.2.19		145.8		22.9		61.3		746	
	2.2.20		152.1				67.2		720	

Applications beyond wood products Lab example: HPL

Neither blisters nor delamination were observed!

Conclusions

- A method for activation/modification of lignin has been developed
- The activated/modified lignin shows:
 - Reactivity towards formaldehyde
 - A clear potential to substitute significant quantities of phenol in various applications
- At an industrial scale lignin has substituted:
 - 50% of phenol in two separate plywood mills
 - 20% of phenol in one mineral wool plant
- At a lab / pilot scale:
 - 50% phenol substitution in HPL
 - 75% in plywood

Initial Portfolio

UPM BioPiva[™] 238

Alkali activated aqueous solution of Kraft lignin for alkaline phenolic resins. Ideally suited for phenolic resins for plywood, OSB and particleboard.

(products for other applications are available upon request)

Domtar BioChoice™

purified softwood kraft lignin

Lignin-Based Binders – an industrial reality

Based on 100% bio-based, purified, lignin product, available in industrial quantities.

'Lead' resin formulations and formulation support available to resin producers and applicators for a fast growing range of applications.

Excellent performance - stringent quality control and our proprietary technology allow for reliable and effective binder formulation.

Depending on the application, 75% replacement of phenol and a significant reduction in formaldehyde used for producing resins are possible in resole-type PF resins, without compromising performance.

Reduced dependency on fossil raw materials - lignin-based products can help to increase security of supply while enabling a smooth transition to renewable raw material.

Cost savings - based on their outstanding performance, UPM's lignin based solutions can help realize cost savings in a variety of applications.

Thank You!

UPM-GmbH Dr. Christian Hübsch Georg-Haindl. Str. 5 D-86153 Augsburg Germany Tel: +49 (0)821 3109-393 email: christian.hubsch@upm.com CHIMAR HELLAS S.A. Charles Markessini (MSc) 88 Sofouli, 55131 Thessaloniki, Greece Tel: +30 2310 424167, email: CharlesM@ari.gr