

Laminated Strong Eco-Material for Building Construction Made of Cellulose-Strengthened Wood

FINAL WORKSHOP

Developement of lignin based glue Lleida, Spain, 4 September 2014 CHIMAR HELLAS SA Panagiotis Nakos

www.celluwood.com

The CELLUWOOD project The role of CHIMAR

 To develop a glue with "greener" character capable of setting in the cold in order to be used as binder for building materials.

We have used LIGNIN as building block for a resin in combination with existing PF technology

- Lignin is renewable
- Lignin can easily replace phenol when properly activated
- Lignin is available from other processes and could therefore be cheap
- Lignin based resins however are dark in color

Glue mix formulations

tests at 6/12/2013

sample's code name:	S1		S2	83			
- I I CONTRACTOR OF THE CONTRA	847R2(49%sol)	50	847R2(49%sol)	50	847R2(49%sol)	50	
mixtures	CaCO3	15	CaCO3	15	Catalyst 2 solid	2	
	parHCHO	0.8	parHCHO	0.8	parHCHO	0.8	
	Catalyst 1 solid	0.5			CaCO3	7	
H. type:	H6040		H6040	H6040			
Glue loading:	150g/m2 (sol resin)		150g/m2 (sol resin)	150g/m2 (sol resin)			
Hardener loading:	~100g/m2 (liq)		~120g/m2 (liq)		~100g/m2 (liq)		
exothermic r.:	YES		YES		YES		
Time under pressure:	~12h		~12h		~12h		
Average wood f.:	100%		100%		100%		
Average shear str.:	2,9N/mm2		3,0N/mm2	3,3N/mm2			

Hundreds of tests

Application of glue mix (150g/m²)

Application of the hardener

Application of hardener(100g/m²)

The hardener stays on surface

Using a "whiter" gluemix

Applying the std mix

The normal mix

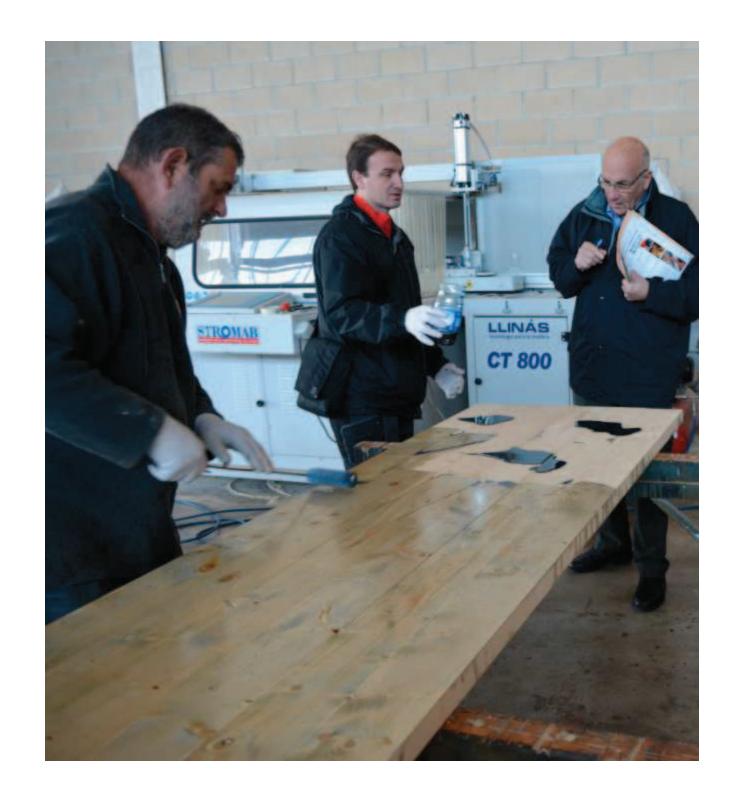
Using spacer to avoid early contact


PRESSING

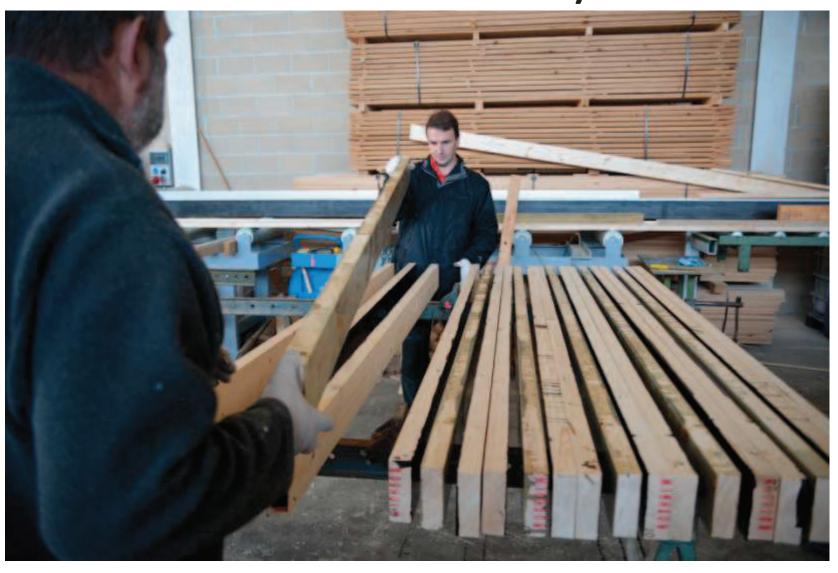
Pressing

Testing the samples

Preparing the industrial glue mix



Applying the industrial glue-mix

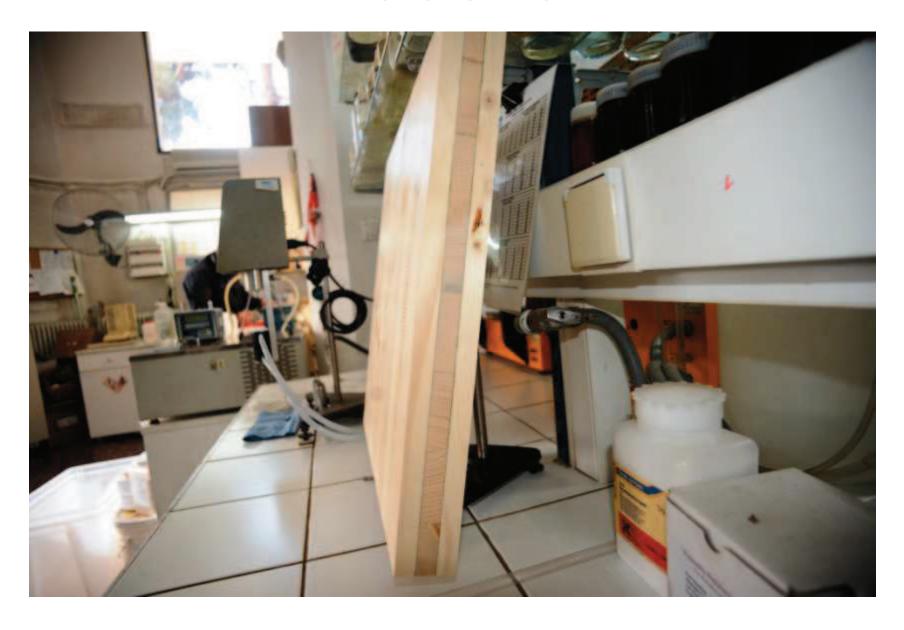


Applying the hardener

Final assembly


Putting things together

TESTING

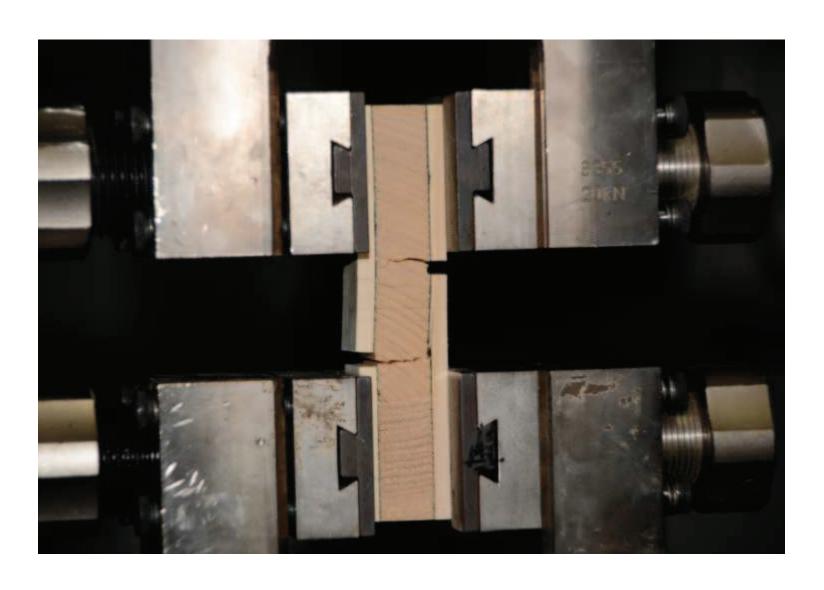

The glue stands the test !!!!

Industrial test in Slovenia

The element

Ready for testing

Trimmed to fit the testing machine


Ready for boiling test

After boiling

The wood fails

Plywood testing

LVL testing

Formaldehyde emissions of Cold setting system in plywood application with low pressure

Celluwo	od ply	wood d	old cu	ıring (l	by Chr	is)				
	Test 1				Test 2					
Small Dimension (cm)	5	.1	5.1		5.0		5.1			
Big Dimension (cm)		39	9.2	39.2						
Area (m²)		0.0	200	0.0198						
Combined area (m ²)		0.0	400	0.0396						
	1st hour	2nd hour	3rd hour	4th hour	1st hour	2nd hour	3rd hour	4th hour		
Conc Blank (mg/l)	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001		
Average	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001		
Conc Sample (mg/l)	0.392	0.376	0.296	0.348	0.371	0.374	0.313	0.270		
Average	0.392	0.376	0.296	0.348	0.371	0.374	0.313	0.270		
Individual value (mg/m²h)	2.46	2.36	1.86	2.18	2.35	2.37	1.98	1.71		
Gas Analysis value (mg/m²h)		2.	21	2.10						
Difference	0.11									
Average	2.16									

Formaldehyde emissions of Cold setting system in LVL application with low pressure

Cellu	wood L	VL col	d curi	ng (by	Chris)					
	Test 1				Test 2					
Small Dimension (cm)	4	.5	4.6		4.5		4.5			
Big Dimension (cm)		39	9.9		39.9					
Area (m²)		0.0	182		0.0180					
Combined area (m ²)		0.0	363	0.0359						
	1st hour	2nd hour	3rd hour	4th hour	1st hour	2nd hour	3rd hour	4th hour		
Conc Blank (mg/l)	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001		
Average	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001		
Conc Sample (mg/l)	0.108	0.101	0.087	0.077	0.073	0.082	0.078	0.074		
Average	0.108	0.101	0.087	0.077	0.073	0.082	0.078	0.074		
Individual value (mg/m²h)	0.75	0.70	0.61	0.54	0.52	0.58	0.55	0.52		
Gas Analysis value (mg/m²h)		0.	65		0.54					
Difference	0.11									
Average	0.60									

We also tried to produce columns

developments limited

Thank you